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ACOUSTIC LINER S'ITJDIES AT TH3 LEWIS RESEARCH CENTER 

by Bert  Phi l l ips  

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

INTRODUCTION 

Research on acoust ic  l i n e r s  a t  the L e w i s  Research Center w a s  prompted 
by the  o r ig ina l  work o f  Wanhainen ( r e f .  l), presented a t  the  1966 I C R F G  
meeting, which indicated a lack o f  understanding of  mean f l o w  and high wave 
amplitude e f f e c t s  on l i n e r  behavior. The research has taken two approaches: 
t h e  t e s t i n g  of arrays of i so la ted  Helmholtz resonators i n  a rocket engine 
and the  cold flow t e s t i n g  o f  a s ingle  Helmholtz resonator. The pmposes of 
t he  "hot" t e s t i n g  were t o  determine whether mean flow e f fec t s  should be 
included i n  a calculat ion of t he  cavi ty  resonant frequency and t 3  determine 
t h e  most e f f ec t ive  a x i a l  p s i t i o n  of  an acoustic l i ne r .  The p u r p s e  of t he  
cold f l o w  t e s t i n g  w a s  t o  determine the  e f fec ts  o f  mean flow and high wave 
amplitude on t h e  resonator behavior. The "hot t e s t ing"  w i l l  be discussed 
first . 

Testing o f  Arrays of' Helmholtz Resonators i n  a Rocket Engine. The "hot 
t e s t ing"  w a s  conducted i n  a 300 p s i  chamber pressure, 11-inch diameter, hydro- 
gen-oxygen rocket engine with a nominal sea l e v e l  t h r u s t  of 20,000 pounds. 
sketch o f  t he  a r r ay  o f  resonators i s  shown in  f igure  1. 
34 resonators per row. The holes were spaced on a 1-inch square a r ray  with 
t h e  first. r n w  3,/4-inch from t h e  in jec tor  face.  
varied from one run t o  t h e  next and provision w a s  made for resonator cavi ty  
gas temperature measurement and cavi ty  gas sampling. 

A 
There were 3 m w s  by 

Each cavi ty  depth could be 

A t y p i c a l  t es t  is  shown i n  f igure  2. Each l i n e r  configuration i s  s t a b i l i t y  
ra ted  by decreasing t h e  i n l e t  hydrsgen temperature while holding the  O/F and 
Pc constant.  
tude s i g n a l  which increases u n t i l ,  a t  some H2 i n l e t  temperature, t r a n s i t i o n  t o  
fu l l - s ca l e  i n s t a b i l i t y ,  or screech, is  encountered. The difference i n  t r a n s i -  
t i o n  temperature between a basel ine (no l i n e r )  configuration and t h e  l i n e r  
configuration is  taken as a measure of  the  l i n e r  damping ( i . e .  t he  lower tihe 
t r a n s i t i o n  temperature, t he  higher the  damping). 

'I'he f lush  mounte6 high I"r-equeii"jr t r a i ? s d u C C r  S k w S  2 1377 ZE?$A- 

Shown i n  figure 3 is a plot  o f  t he  reduction i n  H2 i n l e t  temperatlare 
versus cav i ty  depth fo r  t h e  e n t i r e  array. The cavi ty  depth cor respnding  t o  
a reduction i n  temperature of 473 correspnds t o  t h e  tuning of t he  cavi ty  
resonant frequency with the  wave frequency. The wave frequency corresponds 
t o  the  frequency of t h e  pre t rans i t ion  osc i l l a t ion  and is obtained by spec t ra l  
ana lys i s  of  t he  high frequency transducer output. A sample of t h e  spec t r a l  
ana lys i s  i s  shown i n  f igure 4a. For comparison, a spec t r a l  analysis  o f  t h e  
fu l l - s ca l e  i n s t a b i l i t y  i s  shown i n  figure 4b. 
exists i n  both t h e  1 T  mDde (3300 Hz) and t h e  ZT mode (5700 Hz).  
possible t o  determine t h e  modal type f o r  t he  pre t rans i t ion  osc i l l a t ion ,  bu t  
t h e  difference i n  frequency can be noted. 

The fu l l - sca l e  i n s t a b i l i t y  
It is not 
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By measuring the  cavi ty  gas temperatures and compositions a t  t r ans i t i on ,  
a cavi ty  resonant frequency, based on avai lable  correlat ions from reference 2, 
and t h e  cavi ty  depths of f igure 3, can be calculated.  These results a r e  shown 
i n  f igure  5. The spread i n  calculated frequencies is  due t o  var ia t ions i n  
the  measured cavi ty  gas temperature before t r a n s i t i o n  t o  fu l l - s ca l e  ins ta -  
b i l i t y .  On t h e  same p lo t  i s  shown the  wave frequency based on spec t r a l  
analysis  of  t h e  pre t rans i t ion  noise. 
inches (from f ig .  3) t o  have the  m a x i m  damping, t h e  resonant frequency 
must have been equal t o  the  wave frequency, thus, t he  frequency calculat ion 
i s  i n  e r r o r  by the  difference between 4400 and 6600 H e r t z  or, a frequency 
shif t  f ac to r  of 0.66 is required. I n  order t o  account f o r  such a frequency 
s h i f t ,  recourse i s  made t o  the  frequency s h i f t  cor re la t ion  of reference 3 
which i s  based on mean chamber flow. This correlat ion,  modified f o r  Mach 
number, i s  shown i n  figure 6. The contraction r a t i o  of t h e  rocket engine 
used was  1 .9  which cor respnds  t o  a Mach number of 0.33 which, i n  turn,  cor- 
responds t o  a frequency s h i f t  r a t i o  of 0.63. 
required and mean flow frequency s h i f t s  indicates  t h a t  a mean flow e f fec t  
is required f o r  calculat ing the  cavi ty  resonant frequency. 

0 

I n  order f o r  t he  cavi ty  depth of 1-3/4 
6 

The agreement between t h e  

In  order t o  determine the  most e f fec t ive  a x i a l  p s i t i o n  f o r  a l i ne r ,  a 
series of tests were conducted with t h e  rows nearest  t h e  in jec tor .  The first 
row t e s t e d  w a s  t h a t  nearest t h e  in jec tor  (3/4-inch) and t h e  resul ts  a r e  shown 
i n  figure 7. The reduction i n  hydrogen i n l e t  temperature is plot ted versus 
calculated cavi ty  resonant frequency fo r  j u s t  t h e  first row alone ( c i r cu la r  
symbols). 
no addi t iona l  decrease i n  the  t r ans i t i on  temperature within experimental 
e r ror ,  ind ica t ing  t h a t  it w a s  t h e  first row alone t h a t  contributed t o  the  
damping. consis t ing of  3ne row of holes 3/4-inch from the  
in j ec to r  face 

A s  t h e  next row, and even the  next two rows were added, t he re  was 

Thm, e l i n e r  
would be required f o r  t h i s  engine configuration. 

Cold Flow Testing. The apparatus f o r  determining mean flow and high 
wave amplitude e f f ec t s  i s  shown i n  f igure  8. It consis ts  of a small a i r  wind 
tunnel  on which were mounted e l e c t r i c a l  and electropneumatic s i r ens  f o r  sound 
sources. The Helmholtz resonator w a s  flusii iiis-x?tea w i t h  t k e  imide sf %e 
tunnel  as shown and the  a i r  f l o w  was measured by a p i t o t  s t a t i c  probe tube. 
The system w a s  l imited t o  360 f t / s e c  maximum flow ve loc i ty  and 165 db sound 
pressure level .  

A de t a i l ed  sketch of t h e  Helmholtz resonator is  shown i n  f igure  9. The 
aperture  thickness and area could be readi ly  varied and the  cavi ty  depth w a s  
a l so  var iable .  
f i x i n g  t h e  flow and/or wave amplitude and measuring t h e  o s c i l l a t i n g  phase 
and pressure on both sides of t h e  aperture as the  cavi ty  depth was varied. 
From these  determinations, t he  resonator aperture res i s tance  and reactance 
could b e  readi ly  calculated. 

4 The e f f ec t s  o f  flow and wave amplitude were determined by 

b 

A t y p i c a l  experiment w a s  t o  determine the  reac t ive  mass or aperture  
e f f ec t ive  length from the  phase measurements. I n  order t o  ve r i fy  t h a t  t he  
phase measurements were r e l i ab le ,  ca l ibra t ion  tests were made by measuring 
t e s t  chamber SPL and phase as the  cavity depth was varied f o r  f ixed s i r en  
p w e r  and frequency. The r e s u l t s  a r e  shown i n  f igu re  10. 
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A s  t he  cavi ty  depth w a s  varied, cavity resonant frequency a l so  varied. 
A t  t he  tuned p i n t ,  t he  tes t  chamber SPL reached a minimum when t h e  phase 
angle w a s  903, thus indicat ing t h a t  phase measurement could be used t o  deter-  
mine tuning and aperture reactance. 

The e f f ec t s  of mean flow on aperture reac t ive  mass, as expressed by t h e  
reduction i n  t h i s  aper ture  e f f ec t ive  length, i s  shown in  f igure  11. 
aperture thicknesses and three freQuencies were t e s t ed  and there  w a s  no a f f ec t  
of e i the r  frequency or thickness i n  t h e  ranges tes ted.  
l i n e  representing the Z e f f ,  correction factor ,  i s  shown, When t h e  red.xt ion 
i n  Zeff  (AZeff) equals t he  Zeff correction f a c t x ,  t h e  2eff i s  equal t o  
the  aperture  thickness. 

Two 
e 

On t h e  same plot ,  a 

Comparison o f  t he  mean f l ~ w  r e s c l t s  with t h e  resalts of f i g x e  3 i s  
The r e s ~ ~ l t s 3  a l t h x g h  qual i ta t ive ly  the  same, are quan- 

The differelnee may be ascribed t o  variaf.ior:s i x  t he  
shown i n  f igu re  12. 
t i t a t i v e l y  d i f fe ren t .  
t-xbulence l e v e l  between the  apparatus o f  referenee 3 and the  present experi- 
ment and t h e  f a c t  t h a t  t he  r e s u l t s  o f  reference 3 represent t e s t s  with.an a r r ay  
o f  connected resonators (acoust ic  l i n e r )  whereas t.he present experiment in- 
volved a s ingle  resonator. In  any case, t he  r e su l t s  indicate  %hat,  at. high 
flow ra t e s ,  much of the  2,pf i s  dissipated,  3-7” reduced t o  t h e  a p e r t w e  t,hiek- 
ness. Thus, an i n i t i a l  design f z r  a liner t h a t  w i l l  operate i n  a high ve loc i ty  
environment wJuld ke t o  s e t  t he  2,ff equal t o  t, the  aper tzre  thiekcess,  

The e f f e c t  of mean flow on the  aperture aezust ie  res i s tance  i s  given i n  
f igure  13. The c i r cu la r  symbols, representing the  data of reference 3, were 
obtained from t h e  bandwidth of t h e  absorption-frequency curves shown i n  f igure  
4 gf tbt. reference. [I”nc r e s u l t s  show siirprisingly gmd agreement, 

The e f f e c t  o f  wave amplitude x i  the a p e r k x e  acaust ie  res i s tance  is 
shown i n  f igure  14. The reszits are plotted as E ,  $.he nonlinear res is tance 
parameter, versus the  wave amplf-tude. The data dsss not seem t o  match tke  
r e s u l t s  r e p r t e d  by F’ratt and Whitney, Blackman ( re f ,  Z j ,  or Lngaard (ref, 3). 

Rather than p lo t  t h e  resul ts  a s  E? t h e  resis tance was p lo t ted  d i r e c t l y  
versus t h e  calculated acoustic pa r t i c l e  v e b c i t y ,  as slAggested by Ingaard i n  
reference 4. ?%is i s  showi-i i n  f igure  15. The dats agree w1.t.h t h e  equation 
R = pv’ where p i s  the  gas d.e-.sity and b ”  i s  the  calculated a m u s t i c  
p a r t i c l e  velocity.  These results agree with reference 5 which a t t r i b u t e s  
nonlinear acoust ic  res is tance t o  a pv?*  j e t  loss, Thfs method of  ea ics la t ing  
t h e  acous t ic  res is tance shyuld have great u%ili*y i n  simplifying lirlcr deaim 
calcirlations.  

* The research a t  the  L e w i s  Reszarch Center is  continuing with t h e  purpme 
of applying the  experimental cold f l q w  technique discussea in  t h i s  paper t o  a 
rocket engine enviranment, A pe l iminary  t e s t  r e s u i t  is  shown i n  f igure  16. 
The engine i s  operated i n  a pre t rans i t ian  regirm a.t steady-state  canditions. 
The cav i ty  depth i s  increased while the o s c i l l a t i n g  p r e s s z e s  on both s ides  
of -the aper ture  are measured. 
t h e  cav i ty  campcsition and temperature. From these rF;s;lts, the e f f e c t s  of 
chamber f l o w  and wave amplitude on the  resonator kehavior can be determined. 

‘Ihe cavity is  a k a  psPged with helium t a  define 



- 4  - 

1. Wanhainen, Johr P.; Bloomer, Harry E.; and Vincent, David W . :  Experi- 
mental Investigatiori  of Acoustic Liners t o  Suppress Screech i n  

Conferenc.e, Oct - 17-21, 1966 
Hydrogen-Oxygen Ekigines Presented a t  t h e  Third ICRPG Combustion 

2 .  Blackman, A. W.: Effect  of Nonlinear Losses on t h e  DesigQ of  Absorbers 
f o r  Combustion I n s t a b i l i t i e s .  ARS J., vol. 30, no. 11, Nov. 1S60, CD 

rl 
Y pp . 1022 -1028. w 

3. Mechel, F.; Mertens, P.; and Shi lz ,  W. : Research 01: Sound Fropagation 
V o l .  III. i n  Sound - Absorbent kc;ts with Saperimposed Air S t r e a m .  

Gottiggen ?YrLivg (West Germany) (AME&-Z’DR.-62-142, v31. 111, D E   XI^. 
AD-296984), Dee 1962 

~- 
4. Ingard, UM: Or, the  Theory aaa Desigr. r ~ f  Acoustic Resorato-s. J. Aeous-t. 

SOC. Am., V O ~  . 25, DO. 6, NOV. 1953, pp. 1037-1061. 

5. Harrje, Dsvid To; aaC Sirigna-no, W i l l i a m  A * :  ru’.m.linear Aspects of 
Combustion I n s t a b i l i t y  i n  Liquid Fropel la r t  Roqtket Motors. ”ep. 
No. 553-F (?USA CR-77672), PPixeetos U r ~ i v ~ ,  Guae 1, 1966, p.  38. 



C S -44008 

a 

8 R O W S  

-A D J U STA B LE 

"? f "  

- L I N E R  G A S  
T E M P  
T H E R M O C O U  P L E S  

H Y D R O G E N  

Figure 1. -Tunable l iner .  

,-T R A N S I T  I O N  
1 

I N J E C T I O N  T E M P  - H I G H  F R E Q U E N C Y  P R ET R A N S I T 1  ON7, 

C H A M B E R  P R E S S U R E  
U N S T A B L E  - 

S T A T I C  C H A M B E R  1 L P R E S S U R E  - LLIQUID O X Y G E N  
FLOW R A T E  J 

G A S E O U S  H Y D R O G E N  - 
F L O W  R A T E  

-LIQUID H Y D R O G E N  
FLOW R A T E  

R U N  M A R K E R  - 
0 1 2 3 4  
T I M E ,  SEC 

F igure  2. -Typical screech ra t ing  test, 

cs-44010 



'Or r T U N E D  P O I N T  

H Y D R O G E N  
T E M P  

0 1 2 3 4 
C A V I T Y  D E P T H ,  I N .  

Figure 3. - Hydrogen temperature marg in  vs 
CS-44007 

l i n e r  cavity depth. 

I I I 

P E A K  ( A )  P R E T R A N S I T I O N .  
A M P L I T U D E ,  27  

P S I  

I 
0 2 4 6 8 10 

cs-44002 f - H Z  x 1 ~ 3  

I B )  P O S T - T R A N S I T I O N .  

Figure 4. -Amp l i t ude  spectral analyses of h i g h  frequency transducer data. 



H Y  O R O G E N  
T E M P  

M A R G I N ,  
OR 

V F A V E  F R E Q U E N C Y  
\ 
\ 

'I" 

01 
2000 4000 6000 8000 10 ,000  12 ,000  

C A L C U L A T E D  C A V I T Y  R E S O N A N T  
cs-44005 F R E Q U E N C Y ,  H z  

Figure 5. -Tuning curve for 8 row liner. 

R E L A T I V E  
CuP.?!GE I N  

C A V I T Y  
R E S O N A N T  . 4  



40r 
H Y D R O G E N  

M A R G I N ,  
/ I  

-0-0- 
\ 

T E M P  O R  2 0  3yI c 
0 ONE ROW 

T W O  R O W S  
0 THREE R O W S  

Pi 
\ 10 

2 0 0 0  4000 6000 8 0 0 0  1 0 , 0 0 0  1 2 , 0 0 0  
C A L C U L A T E D  C A V I T Y  R E S O N A N T  

F R E Q U E N C Y ,  H z  CS-44006 
Figure 7. -Ef fect  of l i n e r  leng th  on  stability. 

P I T O T S T A T I C  
, P R O B E  
\ 

r M l C R O P H O N E S  

S O U N D  
S O U R C E  C 5-43998 

Figure 8. -Test section. 



L~~~~~~~~ 
S A M P L E  

-C H A M  BE R 
M I C R O P H O N E  

cs-44003 

Figure 9. - S i n g l e  resonator cross section. 

1 2 8 r  

C H A M B E R  1 2 6 1  2 0 !- 
s P L ,  z 

d B  a 

124t 1 2 2  

FP f = 8 4 5  H z  

160i-,rcHAMBER s p L  

80 - 

4 0  - 

. a  1. 2 1. 6 2 . 0  2 . 4  

6' 

C A V I T Y  D E P T H ,  I N .  cs-44009 

Figure 10. - Phase and SPL vs cavity depth. 



. 
I 

\ 

A L E F F  

I N  L E F F  
RE D U C T I O N  

. 0 4  

. 0 2  

. O l  I L E F F  C O R R E C T I O N  F A C T O R  -------- 

' 0  
O /  

0 f = 833,  t = 3 / 1 6 "  / 
/ 0 f = 1 2 3 7 ,  t = 3 / 1 6 "  

0 f = 7 5 7 ,  t = 3 / 8 "  
o /  

/O 
d = 3 / 8 "  

o /  
/ 

09' 0 
0 0  / 

o n  0 0  
003' 

O /  

-e 

, 0 0 8  

. 0 0 6  
0 0  

~ 

0 100 200 3 0 0  

Figure 11. - LEFF vs  flow velocity. 
M E A N  FLOW V E L O C I T Y ,  F T l S E C  CS-44013 

A L E F F ~ ~  

I N  L E F F  

R E L A T I V E  
R E D U C T I O N  

8r 
MECHELT 

6 -  

4 -  

1' E X  PER I M E N T  

2 -  

100 200 3 0 0  400 5 0 0  0 
M E A N  FLOW V E L O C I T Y ,  F T l S E C  

cs-44OOo 
Figure 12. - Com7arison sf effect of flow on LEFP 



I e 

1 

0 Ref. 3 
0 Present  exp. 

0 

N O N L I N E A R  
R E S 1  S T A N C E  
P A R A M E T E R ,  

E 

v 

L 

'""F 8 0  /-I N G A R o 

\B L A  C K M A  N 
- 

6 -  

1 1 0  1 2 0  1 3 0  1 4 0  1 5 0  1 6 0  1 7 0  

6oF nn 4 4 9  
/IP 

L1v 

20 - / 

/ 
10 - 

8-  

6 -  
- 

4 -  J 
1 5 0  1 6 0  1 7 0  1 1 0  1 2 0  1 3 0  1 4 0  

S O U N O  P R E S S U R E  L E V E L ,  d B  R e  Z X ~ O - ~  p B A R  

Figure 14. - E vs sound pressure level. 
cs-44001 



0 t = 3/10 in. F -  846 Hz 
0 t = 318 in. F = 757 Hz 

1 

.6  ----- 
Linear  acoustic resistance 

. I -  

L’ 

L 

.2- 

I I l l 1  I I I I 1  I l l  I 

U a, 
L? 

N 
t: 

n 
- 

E 
- 

1 
CL 
1 

U 
c 
VI 

3 0 

._ 

a 

C A V I T Y  700 

T f i? ’ ,  [ A ~ 

O R  500 

H I G H  F R E Q U E N C Y  T R A N S D U C E R S  

I N  C H A M B E R  

I N  R E S O N A T O R  C A V I T Y  

180 c r T R A N S l T l O N  
1’ P O I N T  

U ’  
R U N  T I M E -  1 S E C  

cs-44312 
0 

Figure 16. -Typical  resu l t s  w i th  5 - prong liner. 

NASA-CLEVELAND. OHIO E-4169 


